This is a class 10 Question From Trigonometric Identities chapter of Unit Trigonometry. All the steps for the solutions are mentioned as hint.
Solution:
Taking LHS;
= tanA + tan(60°+A) +tan(120°+A) = 3tan 3A
[ tan(A+B) = $\dfrac{tanA+tanB}{1-tanA.tanB}$ ]
= tanA + $\dfrac{tan60°+tanA}{1-tan60°.tanA} + \dfrac{tan120°+tanA}{1-tan120°.tanA}$
[ tan60° = √3 and tan120° = -√3 ]
= tanA + $\dfrac{\sqrt{3}+tanA}{1-\sqrt{3}tanA} + \dfrac{-\sqrt{3}+tanA}{1-(-\sqrt{3}).tanA}$
= tanA + $\dfrac{\sqrt{3}+tanA}{1-\sqrt{3}tanA} + \dfrac{tanA-\sqrt{3}}{1+\sqrt{3}.tanA}$
= tanA + $\dfrac{\sqrt{3}+tanA}{1-\sqrt{3}tanA} - \dfrac{\sqrt{3}-tanA}{1+\sqrt{3}.tanA}$
= tanA +$\dfrac{(\sqrt{3}+tanA)(1+\sqrt{3}.tanA) - (\sqrt{3}-tanA)(1-\sqrt{3}tanA)}{(1-\sqrt{3}tanA)(1+\sqrt{3}tanA)}$
= tanA + $\dfrac{\sqrt{3}+tanA +3tanA +\sqrt{3}tan²A -\sqrt{3}+tanA +3tanA-\sqrt{3}tan²A}{1-3tan²A}$
= tanA + $\dfrac{8tanA}{1-3tan²A}$
= $\dfrac{tanA(1-3tan²A) +8tanA}{1-3tan²A}$
= $\dfrac{tanA -3tan³A +8tanA}{1-3tan²A}$
= 3 $\left ( \dfrac{3tanA -tan³A}{1-3tan²A}\right )$
= 3tan 3A
= RHS
0 Comments
You can let us know your questions in the comments section as well.