Unit 5 - Trigonometry | Sub Multiple Angles
Sub Multiple Angles is the second chapter in Trigonometry for Class 10
students who are studying Optional Mathematics subject.
Any angle that can be expressed as a smaller multiple of a reference angle
is said to be multiple angles.
For example: let the reference angle be A then A/2, A/3, A/4, ... are said
to be the multiple angles of A.
As always, we will have some major formulae in this chapter as well. We
have to remember the formulae to express sin, cos, tan and cot in terms of
multiple angles of A/2 and A/3.
Exercise 2
1. If $cos \frac{ \theta }{2}= \dfrac{4}{5}$, find the value of:
Solution:
Here,
$cos \theta = 2 cos^2 \frac{\theta}{2} -1$
$= 2 \left ( \dfrac{4}{5} \right )^2 - 1$
$= 2 × \dfrac{16}{25} -1$
$= \dfrac{32 - 25}{25}$
$= \dfrac{7}{25}$
Now,
a) $sin \theta$
Solution:
$= \sqrt{ 1 - cos^2 \theta}$
$= \sqrt{1 - \left ( \dfrac{7}{25} \right )^2}$
$= \sqrt{\dfrac{25^2 - 49}{25^2}}$
$= \sqrt{\dfrac{625-49}{625}}$
$= \sqrt{\dfrac{576}{625}}$
$= \sqrt{ \left ( \dfrac{24}{25} \right )^2 }$
$= \dfrac{24}{25}$
b) $cos \theta$
Already mentioned above
c) $tan \theta$
Solution:
$= \dfrac{ sin \theta}{cos \theta}$
$= \dfrac{ \dfrac{24}{25} }{\dfrac{7}{25}}$
$= \dfrac{24}{25} × \dfrac{25}{7}$
$= \dfrac{24}{7}$
4. If $cos \theta = - \dfrac{3}{5}$ and $\theta$ lies between 180° and
270°, find the value of:
a) $sin \frac{\theta}{2}$
Solution:
$sin \frac{\theta}{2} = \sqrt{ \dfrac{1 - cos \theta}{2}}$
$= \sqrt{ \dfrac{1 - \left ( - \dfrac{3}{5} \right ) }{2}}$
$= \sqrt{ \dfrac{1 + \dfrac{3}{5} }{2} }$
$= \sqrt{ \dfrac{\dfrac{5+3}{5} } {2}}$
$= \sqrt{ \dfrac{8}{5} × \dfrac{1}{2}}$
$= \sqrt{\dfrac{4}{5}}$
$= \dfrac{2}{√5}$
Since value of $\theta$ lies between 180° and 270°, value of
$\frac{\theta}{2}$ should be below 180° so, the required value of $sin
\theta$ is $\dfrac{2}{√5}$.
5. If $cos 30° = \dfrac{√3}{2}$, prove that:
a) $sin15° = \dfrac{√3-1}[2√2}$
Solution:
We know,
$sinA = \sqrt{ \dfrac{1 - cos2A}{2} }$
Let, $15° = A and 30° = 2A$
Taking LHS
$sin15° = \sqrt{\dfrac{1 - cos30°}{2}}$
$= \sqrt{\dfrac{1 - \dfrac{√3}{2}}{2}}$
$= \sqrt{ \dfrac{\dfrac{2-√3}{2}}{2}}$
$= \sqrt{ \dfrac{2-√3}{4}}$
$= \sqrt{ \dfrac{2-√3}{4} × \dfrac{2}{2}}$
$= \sqrt{ \dfrac{2(2-√3)}{8}}$
$= \sqrt{ \dfrac{4-2√3}{8}}$
$= \sqrt{ \dfrac{3 - 2√3 + 2}{2^2 × 2}}$
$= \sqrt{ \dfrac{(√3-1)^2}{2^2×2}}$
$= \dfrac{√3-1}{2√2}$
= RHS
8. Prove the following simple identities:
a) $\left ( sin \frac{A}{2} - cos \frac{A}{2} \right )^2 = 1 - sin A$
Answer
b) $cos^4 \frac{A}{2} - sin^4 \frac{A}{2} = cosA$
Answer
c)
Answer
e)
Answer
9. Prove that:
a)
Answer
$b) \dfrac{1 + sec\alpha}{tan \alpha} = cot \frac{\alpha}{2}$
Solution:
LHS
$= \dfrac{1 + sec\alpha}{tan \alpha}$
$= \dfrac{1 + \dfrac{1}{cos \alpha}}{ \dfrac{sin\alpha}{cos \alpha} }$
$= \dfrac{ \dfrac{cos \alpha +1}{cos \alpha} }{ \dfrac{sin \alpha}{cos \alpha} }$
$= \dfrac{cos \alpha +1}{cos \alpha} × \dfrac{cos \alpha}{sin \alpha}$
$= \dfrac{cos \alpha +1}{sin \alpha}$
[Using formula of cos2A = 2cos²A - 1]
$= \dfrac{(2cos^2 \frac{\alpha}{2} -1) +1}{sin \alpha}$
[Using formula of sin2A = 2sinAcosA]
$= \dfrac{2cos^2 \frac{\alpha}{2} }{2sin\frac{\alpha}{2} cos \frac{\alpha}{2}}$
$= \dfrac{cos \frac{\alpha}{2} }{ sin\frac{\alpha}{2}}$
$= cot \frac{ \alpha}{2}$
RHS
c)
Answer
$d) \dfrac{ sin \theta + sin \frac{\theta}{2} }{1 + cos \theta + cos\frac{\theta}{2} } = tan \frac{ \theta}{2}$
Solution:
LHS
$= \dfrac{ sin\theta + sin \frac{\theta}{2} }{( 1 + cos \theta )+ cos \frac{ \theta}{2}}$
[ Using formula: 1 + cos 2A = 2cos²A ]
$= \dfrac{sin \theta + sin \frac{\theta}{2}}{2 cos^2 \frac{ \theta}{2} + cos \frac{\theta}{2}}$
$= \dfrac{ 2 sin \frac{ \theta}{2} cos \frac{ \theta}{2} + sin\frac{ \theta}{2} }{cos \frac{ \theta}{2} ( 2cos \frac{ \theta}{2} + 1) }$
$= \dfrac{ sin \frac{ \theta }{2} (2 cos\frac{ \theta}{2} + 1) }{cos \frac{ \theta}{2} ( 2 cos\frac{ \theta}{2} + 1)} $
$= \dfrac{ sin \frac{ \theta}{2} }{cos \frac{ \theta}{2} }$
$= tan \frac{ \theta}{2}$
RHS
g)
Answer
k)
Answer
10. Show that:
a) $\dfrac{ 1 - tan^2 (45° - \frac{ \theta}{2} )}{ 1 + tan^2(45°- \frac{ \theta}{2})} = sin \theta$
Solution:
LHS
$= \dfrac{ 1 - tan^2(45° - \frac{ \theta}{2} ) }{ 1 + tan^2 (45° - \frac{ \theta}{2})}$
[Using $\dfrac{1 - tan²A}{1+tan²A} = cos2A$]
$= cos \left [2 × \left ( 45° - \frac{\theta}{2} \right ) \right ]$
$= cos \left (45°×2 - \frac{\theta }{2} × 2 \right )$
$= cos (90° - \theta)$
$= sin \theta$
RHS
$b) \dfrac{ 2 tan \left ( \frac{\pi}{4} - \frac{A}{2} \right ) } { 1 + tan^2 \left( \frac{\pi}{4} - \frac{A}{2} \right ) } = cos A$
Solution:
LHS
$= \dfrac{ 2 tan ( \frac{\pi}{4} - \frac{A}{2} ) }{1 + tan^2 ( \frac{\pi}{4} - \frac{A}{2} )}$
[Using $\dfrac{2tanA}{1 + tan²A} = sin2A$]
$= sin \left [ 2 × \left ( \frac{\pi}{4} - \frac{A}{2} \right ) \right ]$
$= sin \left ( \frac{\pi}{4} × 2 - \frac{A}{2} × 2 \right ) $
$= sin (\frac{\pi}{2} - A)$
$= sin(90° - A)$
$= cosA$
RHS
c)
Answer
d) Similar to above-mentioned solutions of 10 a,b,c. Use the formula of $2cos²A-1 = cos2A$.
11 a)
Answer
11 b) If $cos \frac{\theta}{3} = \dfrac{1}{2} \left ( m + \dfrac{1}{m} \right )$, prove that: $cos \theta = \dfrac{1}{2} \left ( m^3 + \dfrac{1}{m^3} \right )$.
Solution:
Here,
$cos \frac{\theta}{3} = \dfrac{1}{2} \left ( m + \dfrac{1}{m} \right )$
Taking LHS of the question,
$= cos \theta$
$= 4cos^3 \frac{ \theta}{3} - 3 cos \frac{\theta}{3}$
$= cos \frac{\theta}{3} \left ( 4cos^2 \frac{\theta}{3} - 3 \right )$
$= cos \frac{\theta}{3} \left [ 4 \left ( \dfrac{1}{2} (m + \frac{1}{m} ) \right) ^2 - 3 \right ]$
$= cos \frac{\theta}{3} \left [ 4 × \dfrac{1}{4} × \left (m^2 + 2 + \dfrac{1}{m^2} \right ) - 3 \right ]$
$= cos \frac{\theta}{3} \left [ m^2 + 2 + \dfrac{1}{m^2} - 3 \right ]$
$= \dfrac{1}{2} \left ( m + \dfrac{1}{m} \right ) \left ( m^2 - 1 + \dfrac{1}{m^2} \right )$
[Using formula (a+b)(a²-ab+b²) = (a³+b³)]
$= \dfrac{1}{2} \left ( m^3 + \dfrac{1}{m^3} \right )$
RHS
12. Prove that:
a)
Answer
$b) \dfrac{1}{4} [(cos \theta + cos \beta)^2 + (sin \theta - sin \beta)^2] = cos^2 \frac{ \theta + \beta}{2}$
Solution:
LHS
$= \dfrac{1}{4} [ (cos \theta + cos \beta)^2 + (sin \theta - sin \beta)^2]$
$= \dfrac{1}{4} [ cos^2 \theta + cos^2 \beta +2 cos \theta cos \beta + sin^2 \theta + sin^2 \beta - 2sin\thetasin\beta]$
$= \dfrac{1}{4} [(cos^2 \theta + sin^2 \theta) + (cos^2 \beta + sin^2 \beta) + 2(cos\theta cos \beta - sin\theta sin\beta)]$
[Using cos(A+B) = cosAcosB - sinAsinB]
$= \dfrac{1}{4} [ 1+1+2cos( \alpha + \beta)]$
$= \dfrac{1}{4} [ 2\{1 + cos (\alpha + \beta)\} ]$
$= \dfrac{2}{4} [1 + cos (\alpha + \beta)]$
[Using 1+cos2A = 2cos²A]
$= \dfrac{1}{2} × 2cos^2 \frac{\alpha + \beta}{2} ]$
$= cos^2 \frac{ \alpha + \beta}{2}$
RHS
13 a) $tan \left ( \dfrac{\pi}{4} - \dfrac{A}{2} \right ) = \dfrac{ cos \frac{A}{2} - sin\frac{A}{2} } {cos \frac{A}{2} + sin \frac{A}{2}} = \dfrac{cosA}{1+sinA}$
Solution:
Left Side
$= tan ( \frac{\pi}{4} - \frac{A}{2} )$
$= tan (\frac{180°}{4} - \frac{A}{2} )$
$= tan (45° - \frac{A}{2})$
$= \dfrac{tan45° - tan \frac{A}{2}}{tan45° + tan \frac{A}{2}}$
$= \dfrac{1 - tan\frac{A}{2} } {1+ tan \frac{A}{2}}$
$= \dfrac{ 1 - \dfrac{sin \frac{A}{2}}{cos \frac{A}{2}}}{1 +
\dfrac{sin\frac{A}{2}}{cos \frac{A}{2}}}$
$= \dfrac{ \dfrac{cos \frac{A}{2} - sin\frac}A}{2} }{cos \frac{A}{2}}
}{\dfrac{cos \frac{A}{2} + sin\frac{A}{2}}{cos \frac{A}{2}}}$
$= \dfrac{ cos\frac{A}{2} - sin\frac{A}{2}}{cos \frac{A}{2} +
sin\frac{A}{2}}$
Middle Side
$= \dfrac{cos \frac{A}{2} - sin\frac{A}{2}}{cos \frac{A}{2} +
sin\frac{A}{2}} × \dfrac{cos \frac{A}{2} + sin\frac{A}{2}}{cos \frac{A}{2}
+ sin\frac{A}{2}}$
$= \dfrac{(cos^2 \frac{A}{2} - sin^2 \frac{A}{2} )}{(cos^2 \frac{A}{2} +
sin^2 \frac{A}{2}) +( 2sin \frac{A}{2} cos \frac{A}{2})}$
Contracting to formulae, we get,
$= \dfrac{cosA}{1 + sinA}$
Right Side
e) $cot ( 45° + \frac{ \theta}{2} ) + tan ( 45° - \frac{\theta}{2*) = \dfrac{2 cos \theta}{1 + sin \theta}$
Solution:
LHS
$= cot (45° + \frac{\theta}{2} ) + tan (45° - \frac{\theta}{2})$
$= \dfrac{1}{tan (45° + \frac{\theta}{2} ) } + \dfrac{tan45° - tan\frac{\theta}{2} }{tan45° + tan \frac{\theta}{2} }$
$= \dfrac{1}{ \dfrac{tan45° + tan\frac{\theta}{2} }{tan45° - tan\frac{\theta}{2} } + \dfrac{1 - tan\frac{\theta}{2} }{1 + \frac{\theta}{2} }$
$= \dfrac{1}{ \dfrac{1 + tan\frac{\theta}{2} }{1 - tan\frac{\theta}{2} }} + \dfrac{1 - tan\frac{\theta}{2} }{1 + tan\frac{\theta}{2}}$
$= \dfrac{1 - tan \frac{\theta}{2} }{1 + tan \frac{\theta}{2} } + \dfrac{1 - tan\frac{\theta}{2} }{1 + tan \frac{\theta}{2}}$
$= \dfrac{1 - tan\frac{\theta}{2} + 1 - tan \frac{\theta}{2} }{1 + tan\frac{\theta}{2}}$
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Class 10 - Sub Multiple Angles - Trigonometry Solved Exercises | Readmore
Optional Mathematics is a collection of the solutions related to sub
multiple angles of Trigonometry for Nepal's Secondary Education
Examination (SEE) appearing students.
#Class10
28 Comments
Put all exercise of sub multiple angle
ReplyDeleteWe will do it really soon sir!
DeleteI want all ans will you pleaseee 😌❤️
DeleteSir insert all solutions of sub multiple how to solve other questions
ReplyDeleteWe have added few more solutions sir.
DeleteSir add all solution of 1 2 3 4 5 6 7 10 11 12 13😥😔please for our bright future
ReplyDeleteDo you need solutions of questions from 1 - 7 also?
DeleteYes provide us solution fron 1to 7 for our great future
ReplyDeleteHaha. Have a great future ahead. We will add it soon!
DeleteSir only one solun provide solun of 4 5 10 11 for our great future
ReplyDeleteCheck it again sir. It is updated now!
Deletecan you add 13 solutions
ReplyDelete13 a has been added!
DeleteSir add all solution but similar type of question don't add for our great future
ReplyDeleteOkay. We are working on it. Most probably all solutions will be added by tomorrow.
DeleteNew solution has been added: Class 10 Transformation of Trigonometric Ratios - Chapter 3 | Trigonometry.
ReplyDeleteSir why you have change language of this solun how to see solution of questions make language english for our great future
ReplyDeleteIs it clear now?
DeleteSir change this latex solun for our great future into english
ReplyDeleteIs it clear now?
Deletesolun दिएर आलु garne भाषा nahi bughidaina
ReplyDeleteअहिले बुझिन्छ होला हैन त?
Delete😴😪😓How to understood this latex language pls convert sir
ReplyDeleteWe hope that it is working now. It has been fixed from our side.
DeleteThankyou so much sir 😍
ReplyDeleteYou are welcome
DeleteSir provide solun of 10 b , c , d , f, and g solun😥 for our great future
ReplyDeleteNo 10 sir mistake la 10 vayaxa 13 ko vanako sir add for our great future😓
ReplyDeleteYou can let us know your questions in the comments section as well.