Solution:
Given,
We have,
Principal or the sum = Rs P
Rate of Compound Interest = R% per annum
Now,
In Case I,
Duration of time (T) = 2 years
Compound Interest (CI) = Rs 5560
So, CI = $P [ \left ( 1+\frac{R}{100} \right )^T -1]$
or, 5560 = $P [ \left ( 1+\frac{R}{100} \right )^2 -1]$
or, 5560 = $P [ \left ( \frac{100+R}{100} \right )^2 -1]$
or, 5560 = $P \left ( \frac{(100+R)^2 -100^2}{100^2} \right)$
or, P = $\frac{5560 * 100^2}{(100+R)^2-100^2}$ ----- (i)
And,
In Case II,
Duration of time (T) = 4 years
Compound Interest (CI) = Rs 12066.60
So, CI = $P [ \left ( 1+\frac{R}{100} \right )^T -1]$
or, 12066.60 = $P [ \left ( 1+\frac{R}{100} \right )^4 - 1]$
or, 12066.60 = $P [ \left ( \frac{100+R}{100} \right )^4 -1]$
or, 12066.60 = $P \left ( \frac{(100+R)^4 -100^4}{100^4} \right)$
or, P = $\frac{12066.60 * 100^4}{(100+R)^4-100^4}$ ------ (ii)
Since, values of P are equal, the equation (i) and (ii) can be written as:
$\frac{5560 * 100^2}{(100+R)^2-100^2}$ = $\frac{12066.60 * 100^4}{(100+R)^4-100^4}$
or, $\frac{5560 * 100^2}{(100+R)^2-100^2}$ = $\frac{12066.60 * 100^4}{\{(100+R)^2-100^2\}\{(100+R)^2+100^2\}}$
or, $\frac{\{(100+R)^2-100^2\}\{(100+R)^2+100^2\}}{\{(100+R)^2-100^2\}} = \frac{12066.60 * 100^4}{5560 * 100^2}$
or, $(100+R)^2 +100^2 = 21702.51$
or, $100^2 +200R +R^2 +100^2 = 21702.51$
or, $R^2 +200R +20000 = 21702.51$
or, $R^2 +200R - 1702.51 = 0$ ----- (iii)
Comparing equation (iii) with ax² +bx +c = 0
We get,
a = 1, b = 200, c = -1702.51, x = R
Using formula of quadratic equation;
$x = \frac{-b +_{-} \sqrt{b^2-4ac}}{2a}$
Since, our rate will we positive, we remove the '-' sign,
or, $R = \frac{-200 + \sqrt{200^2-4(1)(-1702.51)}}{2(1)}$
= $\frac{ -200 + \sqrt{46810.04}}{2}$
= $\frac{ -200 + 216.35}{2}$
So, R = 8.17
$\therefore R = 8.17%$
Again,
Put value of R in equation (i)
P = $\frac{5560 * 100^2}{(100+8.17)^2-100^2}$
= Rs 32691.5
Therefore, the required rate of interest for the given cases is 8.17% per annum and the sum of money or principal is equal to Rs 32691.5.
#CompoundInterest
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.