This is a class 10 Question From Simplification of Rational Expressions chapter of Unit Algebra (Mathematics).
If the solutions doesn't fit your screen, scroll right ---->
Solution:
Given,
= $\dfrac{x⁴}{x²+1} +\dfrac{x⁴}{x²-1} -\dfrac{1}{x²+1} -\dfrac{1}{x²-1}$
= $\dfrac{x⁴}{x²+1} -\dfrac{1}{x²+1} +\dfrac{x⁴}{x²-1} -\dfrac{1}{x²-1}$
= $\dfrac{x⁴-1}{x²+1} +\dfrac{x⁴-1}{x²-1}$
= $\dfrac{(x²)²-1²}{x²+1} +\dfrac{(x²)²-1²}{x²-1}$
= $\dfrac{(x²+1)(x²-1)}{x²+1} +\dfrac{(x²+1)(x²-1)}{x²-1}$
= $x²-1 +x²+1$
Given,
= $\dfrac{x⁴}{x²+1} +\dfrac{x⁴}{x²-1} -\dfrac{1}{x²+1} -\dfrac{1}{x²-1}$
= $\dfrac{x⁴}{x²+1} -\dfrac{1}{x²+1} +\dfrac{x⁴}{x²-1} -\dfrac{1}{x²-1}$
= $\dfrac{x⁴-1}{x²+1} +\dfrac{x⁴-1}{x²-1}$
= $\dfrac{(x²)²-1²}{x²+1} +\dfrac{(x²)²-1²}{x²-1}$
= $\dfrac{(x²+1)(x²-1)}{x²+1} +\dfrac{(x²+1)(x²-1)}{x²-1}$
= $x²-1 +x²+1$
= $2x²$
Here is the Website link to the guide of Simplification of Rational Expressions.
Here is the Page link to all the solutions of Simplification of Rational Expressions.
Question: Simplify: x⁴/(x²+1) +x⁴/(x²-1) -1/(x²+1) -1/(x²-1) | SciPiPupil
#SciPiPupil
#Simplification
#Algebra
0 Comments
You can let us know your questions in the comments section as well.