Question: Simplify: 1 + \dfrac{1}{x-1} +\dfrac{2x}{x²+1} -\dfrac{x}{x+1} +\dfrac{4x³}{x⁴+1}
Solution:
Given,
= 1 + \dfrac{1}{x-1} +\dfrac{2x}{x²+1} -\dfrac{x}{x+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{x-1 +1}{x-1} +\dfrac{2x}{x²+1} -\dfrac{x}{x+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{x}{x-1} +\dfrac{2x}{x²+1} -\dfrac{x}{x+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{x}{x-1} -\dfrac{x}{x+1} +\dfrac{2x}{x²+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{x(x+1) -x(x-1)}{(x-1)(x+1)} +\dfrac{2x}{x²+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{x²+x-x²+x}{x²-1} +\dfrac{2x}{x²+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{2x}{x²-1} +\dfrac{2x}{x²+1} +\dfrac{4x³}{x⁴+1}
= \dfrac{2x(x²+1) +2x(x²-1)}{(x²-1)(x²+1)} +\dfrac{4x³}{x⁴+1}
= \dfrac{2x(x²+1+x²-1)}{x⁴-1} +\dfrac{4x³}{x⁴+1}
= \dfrac{2x(2x²)}{x⁴-1} +\dfrac{4x³}{x⁴+1}
= \dfrac{4x³}{x⁴-1} +\dfrac{4x³}{x⁴+1}
= \dfrac{4x³(x⁴+1) +4x³(x⁴-1)}{(x⁴-1)(x⁴+1)}
= \dfrac{4x³(x⁴+1+x⁴-1)}{x⁸-1}
= \dfrac{4x³(2x⁴)}{x⁸-1}
= \dfrac{8x⁷}{x⁸-1}
= Answer
0 Comments
You can let us know your questions in the comments section as well.