Question: 1 + \dfrac{b}{a-b} +\dfrac{2ab}{a²+b²} -\dfrac{a}{a+b} +\dfrac{4a³b}{a⁴+b⁴}
Solution:
Given,
= 1+\dfrac{b}{a-b} +\dfrac{2ab}{a²+b²} -\dfrac{a}{a+b} +\dfrac{4a³b}{a⁴+b⁴}
= 1 +\dfrac{b}{a-b} -\dfrac{a}{a+b} +\dfrac{2ab}{a²+b²} +\dfrac{4a³b}{a⁴+b⁴}
= 1 +\dfrac{b(a+b) -a(a-b)}{(a-b)(a+b)} +\dfrac{2ab}{a²+b²} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{1(a+b)(a-b) +ab +b² -(a² -ab)}{a²-b²} +\dfrac{2ab}{a²+b²} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{a² -b² +ab +b² -a² +ab}{a² -b²} +\dfrac{2ab}{a²+b²} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{2ab}{a² -b²} + \dfrac{2ab}{a² +b²} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{2ab(a²+b²) +2ab(a²-b²)}{(a²-b²)(a²+b²)} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{2ab(a² +b²+a² -b²)}{a⁴-b⁴} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{2ab(2a²)}{a⁴ -b⁴} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{4a³b}{a⁴-b⁴} +\dfrac{4a³b}{a⁴+b⁴}
= \dfrac{4a³b(a⁴+b⁴) +4a³b(a⁴-b⁴)}{(a⁴-b⁴)(a⁴+b⁴)}
= \dfrac{4a³b(a⁴+b⁴+a⁴-b⁴)}{a⁸-b⁸}
= \dfrac{4a³b(2a⁴)}{a⁸-b⁸}
= \dfrac{8a⁷b}{a⁸-b⁸}
= Answer
0 Comments
You can let us know your questions in the comments section as well.