Question: Simplify: \dfrac{1}{a+1} -\dfrac{a}{a²-1} +\dfrac{a²}{a⁴-1} +\dfrac{a⁴}{a⁸-1}
Solution:
Given,
= \dfrac{1}{a+1} -\dfrac{a}{a²-1} +\dfrac{a²}{a⁴-1} +\dfrac{a⁴}{a⁸-1}
= \dfrac{1}{a+1} -\dfrac{a}{(a+1)(a-1)} +\dfrac{a²}{a⁴-1} +\dfrac{a⁴}{a⁸-1}
= \dfrac{1(a-1) -a}{(a+1)(a-1)} +\dfrac{a²}{a⁴-1} +\dfrac{a⁴}{a⁸-1}
= \dfrac{a-1-a}{a² -1} +\dfrac{a²}{(a²+1)(a²-1)} +\dfrac{a⁴}{a⁸-1}
= \dfrac{-1}{a² -1} +\dfrac{a²}{(a²+1)(a²-1)} +\dfrac{a⁴}{a⁸-1}
= \dfrac{-1(a²+1) +a²}{(a²-1)(a²+1)} +\dfrac{a⁴}{a⁸-1}
= \dfrac{-a² -1+a²}{a⁴-1} +\dfrac{a⁴}{a⁸-1}
= \dfrac{-1}{a⁴ -1} +\dfrac{a⁴}{(a⁴+1)(a⁴-1)}
= \dfrac{-1(a⁴+1) +a⁴}{(a⁴-1)(a⁴+1)}
= \dfrac{-a⁴ -1+a⁴}{a⁸-1}
= \dfrac{-1}{a⁸-1}
= \dfrac{1}{1-a⁸}
= Answer
0 Comments
You can let us know your questions in the comments section as well.