Question: Solve: $2^{2x} - 6.2^{x+1} + 32 = 0$
Solution:
Given,
$2^{2x} - 6.2^{x+1} + 32 = 0$
[ Let 2^x = a ]
$or, (2^x)^2 - 6×2^x×2^1 + 32 = 0$
$or, a² - 12a +32= 0$
$or, a²-(8+4)a +32=0$
$or, a² -8a -4a + 32 = 0$
$or, a(a-8) - 4(a -8)= 0$
$or, (a-4)(a-8) = 0$
Either,
$(a-4) = 0$
$or, 2^x = 4$
$or, 2^x = 2^2$
$\therefore x = 2$
Or,
$(a-8) = 0$
$or, 2^x = 8$
$or, 2^x = 2^3$
$\therefore x = 3$
Hence, (x = 2 or 3).
0 Comments
You can let us know your questions in the comments section as well.