Question: Solve: 2^{2x} - 6.2^{x+1} + 32 = 0


Solution:
Given,

2^{2x} - 6.2^{x+1} + 32 = 0

[ Let 2^x = a ]

or, (2^x)^2 - 6×2^x×2^1 + 32 = 0

or, a² - 12a +32= 0

or, a²-(8+4)a +32=0

or, a² -8a -4a + 32 = 0

or, a(a-8) - 4(a -8)= 0

or, (a-4)(a-8) = 0

Either,

(a-4) = 0

or, 2^x = 4

or, 2^x = 2^2

\therefore x = 2

Or,

(a-8) = 0

or, 2^x = 8

or, 2^x = 2^3

\therefore x = 3

Hence, (x = 2 or 3).


Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil