Question: Solve: 2^x + \dfrac{1}{2^x} = 4\dfrac{1}{4}
Solution:
Given,
2^x + \dfrac{1}{2^x} = 4\dfrac{1}{4}
or, \dfrac{2^x × 2^x +1}{2^x } = \dfrac{4×4 +1}{4}
or, \dfrac{(2^x)^2 +1}{2^x} = \dfrac{17}{4}
or, 4 \{ (2^x)^2 +1) \} = 17 ×2^x
or, 4×(2^x)^2 + 4 = 17 × 2^x
[ Assume 2^x = a ]
or, 4a² +4 = 17a
or, 4a² - 17a +4 = 0
or, 4a² - (16+1) +4 = 0
or, 4a² -16a -a +4= 0
or, 4a(a -4) -1(a-4) = 0
or, (4a -1)(a-4) = 0
Either,
4a -1 = 0
or, 4a = 1
or, a = \dfrac{1}{4}
or, 2^x = \dfrac{1}{2^2}
or, 2^x = 2^{-2}
\therefore x = -2
Or,
a -4 = 0
or, a = 4
or, 2^x = 2^2
\therefore x = 2
Hence, the value of x is either 2 or -2.
0 Comments
You can let us know your questions in the comments section as well.