Question: Solve: $3^{x+2} + \dfrac{1}{3^{x-2}} = 30$
Solution:
Given,
$3^{x+2} + \dfrac{1}{3^{x-2}} = 30$
$or, 3^x × 3^2 + \dfrac{1}{3^x × 3^{-2}} = 30$
$or, 3^x × 9 + \dfrac{3^2}{3^x} = 30$
$or, \dfrac{3^x (3^x × 9) + 3^2}{3^x} = 30$
$or, 9× (3^x)^2 + 9 = 30×3^x$
[ Assume 3^x = a ]
$or, 9a² + 9 = 30a$
$or, 9a² -30a +9 = 0$
$or, 9a² -(27+3)a + 9 = 0$
$or, 9a² -27a -3a +9 = 0$
$or, 9a (a -3) -3(a -3) = 0$
$or, (9a -3)(a-3) = 0$
Either,
$9a -3 = 0$
$or, 9a = 3$
$or, a = \dfrac{3}{9}$
$or, a = \dfrac{1}{3}$
$or, 3^x = 3^{-1}$
$\therefore x = -1$
Or,
$a -3 = 0$
$or, 3^x = 3^1$
$\therefore x = 1$
Hence, the possible values of x are 1 and -1.
0 Comments
You can let us know your questions in the comments section as well.