Question: Solve: $4^{2x-1} = 2^{x+1}$

Solution:
Given,

$4^{2x-1} = 2^{x+1}$

$or, \left ( 2^2 \right)^{2x-1} = 2^{x+1}$

$or, 2^{2(2x-1)} = 2^{x+1}$

$or, 2^{4x -2} = 2^{x+1}$

$or, 4x -2 = x +1$

$or, 4x -x = 1 +2$

$or, 3x = 3$

$or, \dfrac{3x}{3} = \dfrac{3}{3}$

$\therefore, x = 1$
= Answer


Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil