Question: Solve: $4×3^{x+1} - 9^x = 27$
Solution:
Given,
$4×3^{x+1} - 9^x = 27$
$or, 4×3^x×3^1 - 9^x = 27$
$or, 12×3^x - (3^2)^x = 27$
$or, 12×3^x - (3^x)^2 = 27$
[ Let 3^x = a ]
$or, 12a - a^2 = 27$
$or, a² - 12a +27 = 0$
$or, a² - (9+3)a + 27 = 0$
$or, a² -9a -3a +27= 0$
$or, a(a-9) - 3(a-9) = 0$
$or, (a-3)(a-9) = 0$
Either,
$a-3 = 0$
$or, 3^x = 3^1$
$\therefore x= 1$
Or,
$a -9 = 0$
$or, 3^x = 9$
$or, 3^x = 3²$
$\therefore x = 2$
Hence, the possible values of x are 1 and 2.
0 Comments
You can let us know your questions in the comments section as well.