Question: Solve: 4^{x-1} = ( \sqrt{2}^x)

Solution:
Given,

4^{x-1} = (\sqrt{2}^x)

or, \left ( 2^2 \right )^{x-1} = 2^{\dfrac{x}{2}}

or,  2^{2(x-1)} = 2^{\dfrac{x}{2}}

or, 2(x-1) = \dfrac{x}{2}

or, 2 × (2x -2) = \dfrac{2 × x}{2}

or, 4x -4 = x

or, 4x - x -4 +4 = x -x +4

or, 3x = 4

\therefore, x = \dfrac{4}{3}
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil