Question: Solve: $5× 4^{x+1} - 16^x = 64$
Solution:
Given,
$5× 4^{x+1} - 16^x = 64$
$or, 5× 4^x×4^1 - (4^2)^x = 64$
$or, 20 × 4^x - (4^x)^2 = 64$
[ Let $4^x$ = a ]
$or, 20a - a² = 64$
$or, a² - 20a +64 = 0$
$or, a² - (16+4)a + 64 = 0$
$or, a² - 16a -4a +64 = 0$
$or, a(a -16) - 4(a -16) = 0$
$or, (a-4)(a-16) = 0$
Either,
$(a-4) = 0$
$or, 4^x = 4^1$
$\therefore x = 1$
Or,
$(a-16) = 0$
$or, 4^x = 16$
$or, 4^x = 4^2$
$\therefore x = 2$
Hence, x = 1 or 2.
0 Comments
You can let us know your questions in the comments section as well.