Question: Solve: 5× 4^{x+1} - 16^x = 64


Solution:
Given,

5× 4^{x+1} - 16^x = 64

or, 5× 4^x×4^1 - (4^2)^x = 64

or, 20 × 4^x - (4^x)^2 = 64

[ Let 4^x = a ]

or, 20a - a² = 64

or, a² - 20a +64 = 0

or, a² - (16+4)a + 64 = 0

or, a² - 16a -4a +64 = 0

or, a(a -16) - 4(a -16) = 0

or, (a-4)(a-16) = 0

Either,

(a-4) = 0

or, 4^x = 4^1

\therefore x = 1

Or,

(a-16) = 0

or, 4^x = 16

or, 4^x = 4^2

\therefore x = 2

Hence, x = 1 or 2.


Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil