Question: 5^x + 5^{-x} = 25\dfrac{1}{25}
Solution:
Given,
5^x + 5^{-x} = 25\dfrac{1}[25}
or, 5^x + \dfrac{1}{5^x} = 25\dfrac{1}{25}
or, \dfrac{5^x × 5^x + 1}{5^x} = \dfrac{25×25 +1}{25}
or, \dfrac{(5^x)^2 + 1}{5^x} = \dfrac{626}{25}
or, 25\{ (5^x)^2 +1\} = 5^x × 626
[ Let 5^x = a ]
or, 25 \{ a² + 1\} = 626a
or, 25a² + 25 = 626a
or, 25a² -626a +25= 0
or, 25a² - (625 +1)a +25 = 0
or, 25a² -626a -a +25 = 0
or, 25a (a -25) - 1(a -25) = 0
or, (25a -1)(a-25) = 0
Either,
25a -1 = 0
or, 25 × 5^x = 1
or, 5^x = \dfrac{1}{25}
or, 5^x = \dfrac{1}{5^2}
or, 5^x = 5^{-2}
\therefore x = -2
Or,
a -25 = 0
or, a = 25
or, 5^x = 5^2
\therefore x = 2
Hence, the value of x is either 2 or -2.
0 Comments
You can let us know your questions in the comments section as well.