Question: Solve: $7^x + \dfrac{343}{7^x} = 56$
Solution:
Given,
$7^x + \dfrac{343}{7^x} = 56$
$or, \dfrac{7^x × 7^x + 343}{7^x} = 56$
$or, 7^{x +x} + 343 = 56 × 7^x$
$or, 7^{2x} + 343 = 56 × 7^x$
$or, (7^x)^2 + 343 = 56×7^x$
[ Assume 7^x as a ]
$or, a² + 343 = 56a$
$or, a² -56a +343 = 0$
$or, a² -(49+7)a + 343 = 0$
$or, a² -49a - 7a +343 = 0$
$or, a(a -49) - 7(a -49) = 0$
$or, (a -7)(a -49) = 0$
Either,
$a -7 = 0$
$or, 7^x = 7^1$
$\therefore x=1$
Or,
$a -49 = 0$
$or, 7^x = 49$
$or, 7^x = 7^2$
$\therefore x = 2$
Hence, the values of x are 1 or 2.
0 Comments
You can let us know your questions in the comments section as well.