Question: Simplify: \dfrac{b}{a+b} -\dfrac{b}{a-b} +\dfrac{6b²}{a² -b²} -\dfrac{8b⁴}{a⁴ -b⁴}
Solution:
Given,
= \dfrac{b}{a+b} -\dfrac{b}{a-b} +\dfrac{6b²}{a²-b²} -\dfrac{8b⁴}{a⁴-b⁴}
= \dfrac{b(a-b) -b(a+b)}{(a+b)(a-b)} + \dfrac{6b²}{a²-b²} - \dfrac{8b⁴}{a⁴ -b⁴}
= \dfrac{ab -b² -ab -b²}{a² -b²} +\dfrac{6b²}{a²-b²} -\dfrac{8b⁴}{a⁴-b⁴}
= \dfrac{-2b²}{a² -b²} +\dfrac{6b²}{a²-b²} -\dfrac{8b⁴}{a⁴-b⁴}
$= \dfrac{-2b² +6b²}{a² -b²} - \dfrac{8b⁴}{a⁴ -b⁴}$
= \dfrac{4b²}{a² -b²} -\dfrac{8b⁴}{(a² +b²)(a² -b²)}
= \dfrac{4b²(a²+b²) -8b⁴}{(a² -b²)(a² +b²)}
= \dfrac{4a²b² +4b⁴ -8b⁴}{(a² -b²)(a² +b²)}
= \dfrac{4a²b² -4b⁴}{(a² -b²)(a² +b²)}
= \dfrac{4b²(a² -b²)}{(a² -b²)(a² +b²)}
= \dfrac{4b²}{a² +b²}
= Answer
0 Comments
You can let us know your questions in the comments section as well.