Question: Calculate the quartile deviation and its coefficient from the data given.

Marks0-1010-2020-3030-4040-5050-60
No. of students4372272


Solution:
Given,

Arranging the given data in cumulative frequency (c.f.) table:


Marks (x)No. (f)c.f.
0-1044
10-2037
20-30714
30-402236
40-50743
50-60245

N = 45

Now,

$Q_1 \; class = \dfrac{N}{4}^{th} \; class$

$= \dfrac{45}{4}^{th}\; class$

$= 11.25 ^{th} \; class$

In c.f. table, just greater value than 11.25 is 14 whose corresponding class is (20-30). 
So, $Q_1\; class= (20-30)$

For $Q_1$ we have;
l = 20, i = 10, f = 7, c.f. = 7, $\frac{N}{4}$ = 11.25

So,
$Q_1 = l + \dfrac{i}{f} × \left ( \dfrac{N}{4} - c.f. \right )$

$= 20 + \dfrac{10}{7} × (11.25-7)$

$= 20 + 6.07$

$= 26.07$


And,

$Q_3 \; class = \dfrac{3N}{4}^{th} \; class$

$= \dfrac{3×45}{4}^{th}\; class$

$= 33.75 ^{th} \; class$

In c.f. table, just greater value than 33.75 is 36 whose corresponding class is (30-40). 
So, $Q_3\; class= (30-40)$

For $Q_3$ we have;
l = 30, i = 10, f = 22, c.f. = 14, $\frac{3N}{4}$ = 33.75

So,
$Q_3 = l + \dfrac{i}{f} × \left ( \dfrac{3N}{4} - c.f. \right )$

$= 30 + \dfrac{10}{22} × (33.75 - 14)$

$= 30 + 8.97$

$= 38.97$


We know,

Quartile Deviation (Q.D.) = $\dfrac{Q_3 - Q_1}{2}$

$= \dfrac{38.97 - 26.07}{2}$

$= \dfrac{12.9}{2}$

$= 6.45$

Also,

Coefficient of Q.D. = $\dfrac{Q_3 - Q_1}{Q_3 + Q_1}$

$= \dfrac{38.97 - 26.07}{38.97+26.07}$

$= \dfrac{12.9}{65.04}$

$= 0.198$

Hence, the required quartile deviation of the above data is 6.45 and the coefficient of quartile deviation is 0.198.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil