Question: Compute quartile deviation and its coefficient from the following data:
Mid value (yrs.) | 62.5 | 67.5 | 72.5 | 77.5 | 82.5 | 87.5 |
Frequency | 7 | 5 | 8 | 4 | 3 | 3 |
Solution:
Given,
Arranging the given data in cumulative frequency (c.f.) table:
Class | Frequency (f) | c.f. |
62.5 (60-65) | 7 | 7 |
67.5 (65-70) | 5 | 12 |
72.5 (70-75) | 8 | 20 |
77.5 (75-80) | 4 | 24 |
82.5 (80-85) | 3 | 27 |
87.5 (85-90) | 3 | 30 |
N = 30 |
Now,
$Q_1 \; class = \dfrac{N}{4}^{th} \; class$
$= \dfrac{30}{4}^{th}\; class$
$= 7.5 ^{th} \; class$
In c.f. table, just greater value than 7.5 is 12 whose corresponding class is (65-70).
So, $Q_1\; class= (65-70)$
For $Q_1$ we have;
l = 65, i = 5, f = 5, c.f. = 7, $\frac{N}{4}$ = 7.5
So,
$Q_1 = l + \dfrac{i}{f} × \left ( \dfrac{N}{4} - c.f. \right )$
$= 65 + \dfrac{5}{5} × (7.5-7)$
$= 65 + 0.5$
$= 65.5$
And,
$Q_3 \; class = \dfrac{3N}{4}^{th} \; class$
$= \dfrac{3×30}{4}^{th}\; class$
$= 22.5 ^{th} \; class$
In c.f. table, just greater value than 22.5 is 24 whose corresponding class is (75-80).
So, $Q_3\; class= (75-80)$
For $Q_3$ we have;
l = 75, i = 5, f = 4, c.f. = 20, $\frac{3N}{4}$ = 22.5
So,
$Q_3 = l + \dfrac{i}{f} × \left ( \dfrac{3N}{4} - c.f. \right )$
$= 75 + \dfrac{5}{4} × (22.5-20)$
$= 75 + 3.125$
$= 78.125$
$= 78.13$
We know,
Quartile Deviation (Q.D.) = $\dfrac{Q_3 - Q_1}{2}$
$= \dfrac{78.13 - 65.5}{2}$
$= \dfrac{12.63}{2}$
$= 6.315 yrs$
Also,
Coefficient of Q.D. = $\dfrac{Q_3 - Q_1}{Q_3 + Q_1}$
$= \dfrac{78.13-65.5}{78.13+65.5}$
$= \dfrac{12.63}{143.63}$
$= 0.087$
$= 0.09$
Hence, the required quartile deviation of the above data is 6.315 years and the coefficient of quartile deviation is 0.09.
Related Notes and Solutions:
Here is the website link to the notes of Statistics of Class 10.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.