Question: Prove the following trigonometric identity: $cos⁴\dfrac{A}{2} - sin⁴\dfrac{A}{2}$ = cos A.


Solution:

LHS
= $cos⁴\dfrac{A}{2} - sin⁴\dfrac{A}{2}$

= $(cos²\dfrac{A}{2})² - (sin²\dfrac{A}{2})²$

= $(cos²\dfrac{A}{2} - sin²\dfrac{A}{2}) * (cos²\dfrac{A}{2} + sin²\dfrac{A}{2})$

= $1 * cos(2*\dfrac{1}{2})$

= $cos A$
= RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil