Question: Prove the following trigonometric identity: $cos⁴\dfrac{A}{2} - sin⁴\dfrac{A}{2}$ = cos A.
Solution:
LHS
= $cos⁴\dfrac{A}{2} - sin⁴\dfrac{A}{2}$
= $(cos²\dfrac{A}{2})² - (sin²\dfrac{A}{2})²$
= $(cos²\dfrac{A}{2} - sin²\dfrac{A}{2}) * (cos²\dfrac{A}{2} + sin²\dfrac{A}{2})$
= $1 * cos(2*\dfrac{1}{2})$
= $cos A$
= RHS
0 Comments
You can let us know your questions in the comments section as well.