Question: Prove the following trigonometric identity: \dfrac{cosA}{cosA -sinA} - \dfrac{cosA}{cosA +sinA} = tan2A
Solution:
LHS
= \dfrac{cosA}{cosA -sinA} - \dfrac{cosA}{cosA +sinA}
= \dfrac{cosA(cosA +sinA) -cosA(cosA -sinA}{(cosA -sinA)(cosA +sinA)}
= \dfrac{cosA (cosA +sinA -cosA +sinA}{cos²A -sin²A}
= \dfrac{cosA(2sinA)}{cos 2A}
= \dfrac{2sinAcosA}{cos 2A}
= \dfrac{sin 2A}{cos 2A}
= tan 2A
RHS
Related Notes And Solutions:
0 Comments
You can let us know your questions in the comments section as well.