Question: Prove the following trigonometric identity: $\dfrac{cosA}{cosA -sinA} - \dfrac{cosA}{cosA +sinA}$ = tan2A


Solution:

LHS
= $\dfrac{cosA}{cosA -sinA} - \dfrac{cosA}{cosA +sinA}$

= $\dfrac{cosA(cosA +sinA) -cosA(cosA -sinA}{(cosA -sinA)(cosA +sinA)}$

= $\dfrac{cosA (cosA +sinA -cosA +sinA}{cos²A -sin²A}$

= $\dfrac{cosA(2sinA)}{cos 2A}$

= $\dfrac{2sinAcosA}{cos 2A}$

= $\dfrac{sin 2A}{cos 2A}$

= $tan 2A$
RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil