Prove the following trigonometric identity: $cot (45° -A)$ = $tan 2A + sec 2A$


Solution:

LHS
= $cot (45° -A)$

= $\dfrac{cot45°.cotA + 1}{cotA - cot45°}$

= $\dfrac{cot A + 1}{cot A - 1}$

= $\dfrac{\frac{cosA}{sinA} +1}{\frac{cosA}{sinA} -1}$

= $\dfrac{\frac{cosA +sinA}{sinA}}{\frac{cosA -sinA}{sinA}}$

= $\dfrac{cosA +sinA}{cosA -sinA}$

= $\dfrac{(cosA +sinA)(cosA +sinA)}{(cosA -sinA)(cosA +sinA)}$

= $\dfrac{cos²A +sin²A + 2sinAcosA}{cos²A - sin²A}$

= $\dfrac{1 +sin2A}{cos2A}$

= $\dfrac{1}{cos2A} + \dfrac{sin2A}{cos2A}$

= $sec2A + tan2A$

= $tan 2A + sec 2A$
= RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil