Question: Find the inter-quartile range and coefficient of quartile deviation from the following data:
Weight (Kg) | 10-20 | 10-30 | 10-40 | 10-50 | 10-60 | 10-70 |
No. of men | 12 | 31 | 36 | 46 | 55 | 61 |
Solution:
Given,
Arranging the given data in cumulative frequency (c.f.) table:
Marks (x) | No. (f) | c.f. |
10-20 (10-20) | 12 | 12 |
10-30 (20-30) | 19 | 31 |
10-40 (30-40) | 5 | 36 |
10-50 (40-50) | 10 | 46 |
10-60 (50-60) | 9 | 55 |
10-70 (60-70) | 6 | 61 |
N=61 |
Now,
$Q_1 \; class = \dfrac{N}{4}^{th} \; class$
$= \dfrac{61}{4}^{th}\; class$
$= 15.25 ^{th} \; class$
In c.f. table, just greater value than 15.25 is 3@ whose corresponding class is (20-30).
So, $Q_1\; class= (20-30)$
For $Q_1$ we have;
l = 20, i = 10, f = 19, c.f. = 12, $\frac{N}{4}$ = 15.25
So,
$Q_1 = l + \dfrac{i}{f} × \left ( \dfrac{N}{4} - c.f. \right )$
$= 20 + \dfrac{10}{19} × (15.25-12)$
$= 20 + 1.71$
$= 21.71$
And,
$Q_3 \; class = \dfrac{3N}{4}^{th} \; class$
$= \dfrac{3×61}{4}^{th}\; class$
$= 45.75 ^{th} \; class$
In c.f. table, just greater value than 45.75 is 46 whose corresponding class is (40-50).
So, $Q_3\; class= (40-50)$
For $Q_3$ we have;
l = 40, i = 10, f = 10, c.f. = 36, $\frac{3N}{4}$ = 45.75
So,
$Q_3 = l + \dfrac{i}{f} × \left ( \dfrac{3N}{4} - c.f. \right )$
$= 40 + \dfrac{10}{10} × (45.75 - 36)$
$= 40 + 9.75$
$= 49.75$
We know,
Inter-quartile range = $Q_3 - Q_1$
$= 49.75 - 21.71$
$= 28.04$
Also,
Coefficient of Q.D. = $\dfrac{Q_3 - Q_1}{Q_3 + Q_1}$
$= \dfrac{49.75 - 21.71}{49.75+21.71}$
$= \dfrac{28.04}{71.46}$
$= 0.39$
Hence, the required inter-quartile range of the above data is 28.04 and the coefficient of quartile deviation is 0.39.
Related Notes and Solutions:
Here is the website link to the notes of Statistics of Class 10.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.