Question: Find the inter-quartile range and coefficient of quartile deviation from the following data:

Weight (Kg)10-2010-3010-4010-5010-6010-70
No. of men123136465561


Solution:
Given,

Arranging the given data in cumulative frequency (c.f.) table:



Marks (x)No. (f)c.f.
10-20 (10-20)1212
10-30 (20-30)1931
10-40 (30-40)536
10-50 (40-50)1046
10-60 (50-60)955
10-70 (60-70)661
N=61

Now,
$Q_1 \; class = \dfrac{N}{4}^{th} \; class$

$= \dfrac{61}{4}^{th}\; class$

$= 15.25 ^{th} \; class$

In c.f. table, just greater value than 15.25 is 3@ whose corresponding class is (20-30). 
So, $Q_1\; class= (20-30)$

For $Q_1$ we have;
l = 20, i = 10, f = 19, c.f. = 12, $\frac{N}{4}$ = 15.25

So,
$Q_1 = l + \dfrac{i}{f} × \left ( \dfrac{N}{4} - c.f. \right )$

$= 20 + \dfrac{10}{19} × (15.25-12)$

$= 20 + 1.71$

$= 21.71$


And,

$Q_3 \; class = \dfrac{3N}{4}^{th} \; class$

$= \dfrac{3×61}{4}^{th}\; class$

$= 45.75 ^{th} \; class$

In c.f. table, just greater value than 45.75 is 46 whose corresponding class is (40-50). 
So, $Q_3\; class= (40-50)$

For $Q_3$ we have;
l = 40, i = 10, f = 10, c.f. = 36, $\frac{3N}{4}$ = 45.75

So,
$Q_3 = l + \dfrac{i}{f} × \left ( \dfrac{3N}{4} - c.f. \right )$

$= 40 + \dfrac{10}{10} × (45.75 - 36)$

$= 40 + 9.75$

$= 49.75$


We know,

Inter-quartile range = $Q_3 - Q_1$

$= 49.75 - 21.71$

$= 28.04$

Also,

Coefficient of Q.D. = $\dfrac{Q_3 - Q_1}{Q_3 + Q_1}$

$= \dfrac{49.75 - 21.71}{49.75+21.71}$

$= \dfrac{28.04}{71.46}$

$= 0.39$

Hence, the required inter-quartile range of the above data is 28.04 and the coefficient of quartile deviation is 0.39.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil