Question: Find the mean deviation about the median for the following data.

Class 0-1010-2020-3030-4040-5050-60
Frequency67151642


Solution:

Arranging given data in cumulative frequency (c.f.) table,

Class Frequency c.f.
0-10 6 6
10-20 7 13
20-30 15 28
30-40 16 44
40-50 4 48
50-60 2 50
N=50

Median (M) class = $\dfrac{N}{2}^{th} class$

$= \dfrac{50}{2}^{th} class$

$= 25^{th} class$

In c.f. table, just greater value than 25 is 28 whose corresponding class is (20-30). So, median class = (20-30).

So we know,

l = 20, i = 10, f = 15, c.f. = 13, $\frac{N}{2}$ = 25

M = $l + \dfrac{i}{f} × \left ( \dfrac{N}{2} - c.f. \right ) $

$= 20 + \dfrac{10}{15} × (25-13)$

$= 20 + 8$

$= 28$

Now,

Arranging the data in a table:
ClassFrequency
(f)
Mid
Value(x)
|x-M|f|x-M|
0-106523138
10-207151391
20-301525345
30-4016357122
40-504451768
50-602552754
$\sum$f|x-M|
= 508

Now,

Mean Deviation about the median (M.D.) = $\dfrac{\sum f|x-M|}{N}$

$= \dfrac{508}{50}$

$= 10.16$


Hence, the required mean deviation about the median of the above data is 10.16.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil