Question: Find the mean deviation about the mean for the following data:

Mark0-1010-2020-3030-4040-50
Frequency23654


Solution:

Arranging data in a table,


MarksFrequency
(f)
Mid
Value(x)
fx|x-x̄|f|x-x̄|
0-1025102346
10-20315451339
20-30625150318
30-40535175735
40-504451801768
N= 20$\sum$fx
= 560

$\sum$f|x-x̄|
= 206
Now,
Mean () =$\dfrac{\sum fx}{N}$

$= \dfrac{560}{20}$

$= 28$

And,

Mean Deviation from Mean (M.D.) = $\dfrac{\sum f|x-x̄|}{N}$

$= \dfrac{206}{20}$

$= 10.30$

Also,

Coefficient of M.D. = $\dfrac{M.D.}{x̄}$

$= \dfrac{10.30}{20}$

$= 0.37$

Hence, the required mean deviation about the mean of the given data is 10.30 and coefficient of mean deviation is 0.37.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil