Question: Find the mean deviation and its coefficient about the median for the following data.

Class0-66-1212-1818-2424-30
Frequency8101295


Solution:

Arranging given data in cumulative frequency (c.f.) table,

ClassFrequencyc.f.
0-688
6-121018
12-181230
18-24939
24-30544
N=44

Median (M) class = $\dfrac{N}{2}^{th} class$

$= \dfrac{44}{2}^{th} class$

$= 22^{nd} class$

In c.f. table, just greater value than 22 is 30 whose corresponding class is (12-18). So, median class = (12-18).

So we know,

l = 12, i = 6, f = 12, c.f. = 18, $\frac{N}{2}$ = 22

M = $l + \dfrac{i}{f} × \left ( \dfrac{N}{2} - c.f. \right ) $

$= 12 + \dfrac{6}{12} × (22-18)$

$= 12 + 2$

$= 14$

Now,

Arranging the data in a table:
ClassFrequency
(f)
Mid
Value(x) 
|x-M|f|x-M|
0-6631188
6-1279550
12-181515412
18-241621763
24-304271365
$\sum$f|x-M|
= 278

Now,

Mean Deviation about the median (M.D.) = $\dfrac{\sum f|x-M|}{N}$

$= \dfrac{278}{44}$

$= 6.318$

And,

Coefficient of M.D. = $\dfrac{M.D.}{M}$

$= \dfrac{6.318}{14}$

$= 0.451$


Hence, the required mean deviation about the median of the above data is 6.318 and the coefficient of mean deviation is 0.451.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil