Question: Find the mean deviation and its coefficient about from the following data:

Mark0-100-200-300-400-50
Frequency513284450


Solution:

Arranging data in a table,


MarksFrequency
(f)
Mid
Value(x)
fx|x-x̄|f|x-x̄|
0-10552522110
0-20 (10-20)8151201296
0-30 (20-30)1525375230
(0-40) 30-4016355608128
(0-50) 40-5064527018108
N= 50$\sum$fx
= 1350

$\sum$f|x-x̄|
= 472
Now,
Mean () =$\dfrac{\sum fx}{N}$

$= \dfrac{1350}{50}$

$= 27$

And,

Mean Deviation from Mean (M.D.) = $\dfrac{\sum f|x-x̄|}{N}$

$= \dfrac{472}{50}$

$= 9.44$

Also,

Coefficient of M.D. = $\dfrac{M.D.}{x̄}$

$= \dfrac{9.44}{27}$

$= 0.349$

$= 0.35$

Hence, the required mean deviation about the mean of the given data is 9.44 and coefficient of mean deviation is 0.35.

Related Notes and Solutions:

Here is the website link to the notes of Statistics of Class 10.

#SciPiPupil