Question: Find the quartile deviation from the following data:
Marks | <5 | <10 | <15 | <20 | <25 | <30 |
Frequency (f) | 2 | 4 | 7 | 13 | 27 | 40 |
Solution:
Given,
Arranging the given data in cumulative frequency (c.f.) table:
Marks (x) | No. (f) | c.f. |
<5 (0-5) | 2 | 2 |
<10 (5-10) | 2 | 4 |
<15 (10-15) | 3 | 7 |
<20 (15-20) | 6 | 13 |
<25 (20-25) | 14 | 27 |
<30 (25-30) | 13 | 40 |
N = 40 |
Now,
$Q_1 \; class = \dfrac{N}{4}^{th} \; class$
$= \dfrac{40}{4}^{th}\; class$
$= 10^{th} \; class$
In c.f. table, just greater value than 10 is 13 whose corresponding class is (15-20).
So, $Q_1\; class= (15-20)$
For $Q_1$ we have;
l = 15, i = 5, f = 6, c.f. = 7, $\frac{N}{4}$ = 10
So,
$Q_1 = l + \dfrac{i}{f} × \left ( \dfrac{N}{4} - c.f. \right )$
$= 15 + \dfrac{5}{6} × (10-7)$
$= 15 + 2.5$
$= 17.5$
And,
$Q_3 \; class = \dfrac{3N}{4}^{th} \; class$
$= \dfrac{3×40}{4}^{th}\; class$
$= 30 ^{th} \; class$
In c.f. table, just greater value than 30 is 40 whose corresponding class is (25-30).
So, $Q_3\; class= (25-30)$
For $Q_3$ we have;
l = 25, i = 5, f = 13, c.f. = 27, $\frac{3N}{4}$ = 30
So,
$Q_3 = l + \dfrac{i}{f} × \left ( \dfrac{3N}{4} - c.f. \right )$
$= 25 + \dfrac{5}{13} × (30 - 27)$
$= 25 + 1.15$
$= 26.15$
We know,
Quartile Deviation (Q.D.) = $\dfrac{Q_3 - Q_1}{2}$
$= \dfrac{26.15 - 17.5}{2}$
$= \dfrac{8.65}{2}$
$= 4.325$
Hence, the required quartile deviation of the above data is 4.325.
Related Notes and Solutions:
Here is the website link to the notes of Statistics of Class 10.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.