Question: If a=10^x, b=10^y, and a^yb^x = 100, prove that: xy = 1.

Solution:
Given,

a=10^x, b=10^y, and a^yb^x = 100
To prove: xy = 1

We have,

a^yb^x = 100

or, (10^x)^y × (10^y)^x = 10^2

or, 10^{xy} × 10^{xy} = 10^2

or, 10^{xy+xy} = 10^2

or, 2xy = 2

\therefore xy = 1
#proved

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil