Question: If 2^x = 3^y = 12^z, show that: \dfrac{1}{z} = \dfrac{1}{y} + \dfrac{2}{x}.
Solution:
Given: 2^x = 3^y = 12^z
To prove: \dfrac{1}{z} = \dfrac{1}{y} + \dfrac{2}{x}
We know,
2^x = 12^z
or, 2 = 12^{\dfrac{z}{x}} - (i)
Also,
3^y = 12^z
or, 3 = 12^{\dfrac{z}{y}} - (ii)
Now,
12^z = 12^z
or, 12^z = (3×4)^z
or, 12^z = (3×2²)^z
or, 12^z = 3^z × 2^{2z}
[ Put value of 3 and 2 from equations (ii) and (i), respectively ]
or, 12^z = \left ( 12^{\dfrac{z}{y}} \right )^z × \left ( 12^{\dfrac{z}{x}} \right )^{2z}
or, 12^z = 12^{\dfrac{z²}{y}} × 12^{\dfrac{2z²}{x}}
or, 12^z = 12^{\dfrac{z²}{y} + \dfrac{2z²}{x}}
or, z = \dfrac{z²}{y} + \dfrac{2z²}{x}
or, z = \dfrac{xz² + 2yz²}{xy}
or, z = \dfrac{z²(x+2y)}{xy}
or, \dfrac{xyz}{z²} = x +2y
or, \dfrac{xy}{z} = x + 2y
[ Dividing by xy ]
or, \dfrac{xy}{xyz} = \dfrac{x}{xy} + \dfrac{2y}{xy}
o\therefore \dfrac{1}{z} = \dfrac{1}{y} + \dfrac{2}{x}
#proved
0 Comments
You can let us know your questions in the comments section as well.