Question: If abc + 1 = 0, prove that: $\dfrac{1}{1-a-b^{-1}} +$$\dfrac{1}{1-b-c^{-1}} + $$\dfrac{1}{1-c-a^{-1}} = 1$
Solution:
Given,
$abc + 1= 0$
$or, abc = -1$
LHS
$= \dfrac{1}{1-a-b^{-1}} + \dfrac{1}{1-b-c^{-1}} + \dfrac{1}{1-c-a^{-1}}$
$= \dfrac{1}{1 - a - \dfrac{1}{b}} + \dfrac{1}{1-b-\dfrac{1}{c}} + \dfrac{1}{1-c - \dfrac{1}{a}}$
$= \dfrac{1}{\dfrac{b - ab - 1}{b}} + \dfrac{1}{\dfrac{c-bc-1}{c}} + \dfrac{1}{\dfrac{a-ac-1}}$
$= \dfrac{b}{b-ab-1} + \dfrac{c}{c-bc-1} + \dfrac{a}{a-ac-1}$
[ Multiply first term by 'c/c' ]
$= \dfrac{bc}{bc - abc -c} + \dfrac{c}{c-bc-1} + \dfrac{a}{a-ac-1}$
$= \dfrac{bc}{bc -(-1) -c} + \dfrac{c}{c-bc-1} + \dfrac{a}{a-ac-1}$
$= \dfrac{bc}{1 + bc -c} - \dfrac{c}{1+bc -c} + \dfrac{a}{a-ac-1}$
$= \dfrac{bc -c}{1+bc-c} + \dfrac{a}{a-ac-1}$
[ Multiply first term by 'a/a' ]
$= \dfrac{abc - ac}{a +abc - ac} +\dfrac{a}{a-ac-1}$
$= \dfrac{(-1) - ac}{a +(-1) -ac} +\dfrac{a}{a-ac-1}$
$= \dfrac{-1-ac}{a-ac-1} + \dfrac{a}{a-ac-1}$
$= \dfrac{-1-ac+a}{a-ac-1}$
$= \dfrac{(a-ac-1)}{(a-ac-1)}$
$= 1$
RHS
Related Notes and Solutions:
Here is the website link to the notes of Indices.
#SciPiPupil
1 Comments
If you have any doubts, feel free to leave them in the comments section here. Else, you may see other solutions that we have here on our website.
ReplyDeleteYou can let us know your questions in the comments section as well.