Question: If cos A = \dfrac{1}{2} \left ( a +\dfrac{1}{a} \right), show that:
cos 2A = \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right)
Solution:
Given,
cos A = \dfrac{1}{2} \left ( a +\dfrac{1}{a} \right)
We know,
cos 2A
= 2cos²A - 1
= 2 (cosA)² -1
= 2 \left \{ \dfrac{1}{2} \left ( a + \dfrac{1}{a} \right) \right \}^2 -1
= 2 \left \{ \dfrac{1}{4} \left ( a² + 2 + \dfrac{1}{a²} \right) \right \} -1
= \dfrac{ \left ( a² + 2 + \dfrac{1}{a²} \right) }{2} -1
= \dfrac{ a² +2 +\dfrac{1}{a²} -2 }{2}
= \dfrac{a² +\dfrac{1}{a²}
= \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right )
= RHS
0 Comments
You can let us know your questions in the comments section as well.