Question: If $cos A$ = $\dfrac{1}{2} \left ( a +\dfrac{1}{a} \right)$, show that:
$cos 2A = \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right)$
Solution:
Given,
$cos A$ = $\dfrac{1}{2} \left ( a +\dfrac{1}{a} \right)$
We know,
$cos 2A$
$= 2cos²A - 1$
$= 2 (cosA)² -1$
$= 2 \left \{ \dfrac{1}{2} \left ( a + \dfrac{1}{a} \right) \right \}^2 -1$
$= 2 \left \{ \dfrac{1}{4} \left ( a² + 2 + \dfrac{1}{a²} \right) \right \} -1$
$= \dfrac{ \left ( a² + 2 + \dfrac{1}{a²} \right) }{2} -1$
$= \dfrac{ a² +2 +\dfrac{1}{a²} -2 }{2}$
$= \dfrac{a² +\dfrac{1}{a²}$
$= \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right )$
= RHS
0 Comments
You can let us know your questions in the comments section as well.