Question: If $cos A$ = $\dfrac{1}{2} \left ( a +\dfrac{1}{a} \right)$, show that:


$cos 2A = \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right)$


Solution:
Given,
$cos A$ = $\dfrac{1}{2} \left ( a +\dfrac{1}{a} \right)$


We know,
$cos 2A$
$= 2cos²A - 1$

$= 2 (cosA)² -1$

$= 2 \left \{  \dfrac{1}{2} \left ( a + \dfrac{1}{a} \right) \right \}^2 -1$

$= 2 \left \{ \dfrac{1}{4} \left ( a² + 2 + \dfrac{1}{a²} \right) \right \} -1$

$= \dfrac{ \left ( a² + 2 + \dfrac{1}{a²} \right) }{2}  -1$

$= \dfrac{ a² +2 +\dfrac{1}{a²} -2 }{2}$

$= \dfrac{a² +\dfrac{1}{a²}$

$= \dfrac{1}{2} \left ( a² + \dfrac{1}{a²} \right )$
= RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil