Question: If $x²+2 = 2⅔ + 2^{-⅔}$, show that: 2x(x²+3) = 3.
Solution:
Given,
$x² + 2= 2^{\frac{2}{3}} + 2^{-\frac{2}{3}}$
$or, x² = 2^{\frac{2}{3}} - 2 + 2^{-\frac{2}{3}}$
$or, x² = 2^{\frac{2}{3}} -2 + \dfrac{1}{2^{\frac{2}{3}}}$
$or, x² = \left ( 2^{\frac{1}{3}} \right )^2 - \left ( 2 * 2^{\frac{1}{3}} * \dfrac{1}{2^{\frac{1}{3}}} \right ) + \left ( \dfrac{1}{2^{\frac{1}{3}}} \right )^2$
$or, x² = \left ( 2^{\frac{1}{3}} - \dfrac{1}{2^{\frac{1}{3}}} \right )^2$
$or, x = \left ( 2^{\frac{1}{3}} - \dfrac{1}{2^{\frac{1}{3}}} \right ) $ - (i)
[ Cubing both sides of equation (i) ]
$or, x³ = \left ( 2^{\frac{1}{3}} - \dfrac{1}{2^{\frac{1}{3}}} \right )^3 $
[ (a-b)³ = a³-b³ -3ab(a-b) ]
$or, x³ = \left ( 2^{\frac{1}{3}} \right )^3 - \left ( \dfrac{1}{2^{\frac{1}{3}}} \right )^3 - 3*2^{\frac{1}{3}} * \dfrac{1}{2^{\frac{1}{3}}} \left (2^{\frac{1}{3}} - \dfrac{1}{2^{\frac{1}{3}}} \right )$
[ From (i) $\left (2^{\frac{1}{3}} - \dfrac{1}{2^{\frac{1}{3}}} \right ) = x$ ]
$or, x³ = 2 - \dfrac{1}{2} - 3*1*(x)$
$or, x³ = 2 - \dfrac{1}{2} - 3x$
$or, x³ = \dfrac{4 - 1 -6x}{2}$
$or, 2x³ = 3 - 6x$
$or, 2x³ +6x = 3$
$\therefore, 2x(x²+3) = 3$
#proved
Related Notes and Solutions:
Here is the website link to the notes of Indices.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.