Question: If x²+y²+z²= xy+yz+zx, show that: \left ( \dfrac{a^x}{a^y} \right ) ^{x-y} ×\left ( \dfrac{a^y}{a^z} \right ) ^{y-z} ×\left ( \dfrac{a^z}{a^x} \right ) ^{z-x}= 1
Solution:
Given,
x²+y²+z²= xy+yz+zx
To prove: \left ( \dfrac{a^x}{a^y} \right ) ^{x-y} ×\left ( \dfrac{a^y}{a^z} \right ) ^{y-z} ×\left ( \dfrac{a^z}{a^x} \right ) ^{z-x}= 1
LHS
= \left ( \dfrac{a^x}{a^y} \right ) ^{x-y} ×\left ( \dfrac{a^y}{a^z} \right ) ^{y-z} × \left ( \dfrac{a^z}{a^x} \right ) ^{z-x}
= \left ( a^{x-y} \right ) ^{x-y} × \left ( a^{y-*} \right ) ^{y-z} × \left ( a^{z-x} \right ) ^{z-x}
= a^{(x-y)(x-y)} × a^{(y-z)(y-z)} × a^{(z-x)(z-x)}
= a^{(x-y)² + (y-z)² + (z-x)²}
= a^{x² -2xy+y²+y²-2yz +z²+z²-2zx+x²}
= a^{2(x²+y²+z²) - 2(xy+yz+zx)}
[ Given: x²+y²+z² = xy+yz+zx ]
= a^{2(xy+yz+zx) - 2(xy+yz+zx)}
= a^0
= 1
RHS
Related Notes and Solutions:
Here is the website link to the notes of Indices.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.