Question: Simplify: \dfrac{p + (pq²)^{\frac{1}{3}} + (p²q)^{\frac{1}{3}}}{p-q} ×\left ( 1 - \dfrac{q^{\frac{1}{3}}}{p^{\frac{1}{3}}} \right )


Solution:
Given,

= \dfrac{p + (pq²)^{\frac{1}{3}} + (p²q)^{\frac{1}{3}}}{p-q} ×\left ( 1 - \dfrac{q^{\frac{1}{3}}}{p^{\frac{1}{3}}} \right )

= \dfrac{p + (pq²)^{\frac{1}{3}} + (p²q)^{\frac{1}{3}}}{p-q} ×\left ( \dfrac{p^{\frac{1}{3}} - q^{\frac{1}{3}}}{p^{\frac{1}{3}}} \right )

= \dfrac{p^{-\frac{1}{3}} \{ p + (pq²)^{\frac{1}{3}} + (p²q)^{\frac{1}{3}} \} }{p-q} × \left ( p^{\frac{1}{3}} - q^{\frac{1}{3}} \right )

= \dfrac{p^{-\frac{1}{3}} \{ p + p^{\frac{1}{3}}q^{\frac{2}{3}} + p^{\frac{2}{3}}q^{\frac{1}{3}} \} }{p-q} × \left ( p^{\frac{1}{3}} - q^{\frac{1}{3}} \right )

= \dfrac{p^{1 - \frac{1}{3}} + p^{\frac{1}{3} -\frac{1}{3}}q^{\frac{2}{3}} +p^{\frac{2}{3} -\frac{1}{3}}q^{\frac{1}{3}}}{p-q} × \left ( p^{\frac{1}{3}} - q^{\frac{1}{3}} \right )

= \dfrac{p^{\frac{2}{3}} + q^{\frac{2}{3}} + p^{\frac{1}{3}}q^{\frac{1}{3}}}{p-q} × \left ( p^{\frac{1}{3}} - q^{\frac{1}{3}} \right )

Take p^{\frac{1}{3}} as a and q^{\frac{1}{3}} as b. We get the formula of a³-b³.


= \dfrac{(p^{\frac{1}{3}})^3 - (q^{\frac{1}{3}})^3}{p-q}

= \dfrac{p-q}{p-q}

= 1
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil