Question: Prove the following trigonometric identity: \dfrac{sin 8A}{sin 4A} - \dfrac{cos 8A}{cos 4A} = sec 4A.


Solution:

LHS
= \dfrac{sin 8A}{sin 4A} - \dfrac{cos 8A}{cos 4A}

= \dfrac{sin 8A.cos4A - cos8A.sin4A}{sin 4A.cos 4A}

= \dfrac{sin (8A -4A)}{sin 4A.cos4A}

= \dfrac{sin 4A}{sin4A.cos4A}

= \dfrac{1}{cos 4A}

= sec 4A
= RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil