Question: Prove the following trigonometric identity: $\dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA}$ = sec A.
Solution:
LHS
= $\dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA}$
= $\dfrac{sin 2A.cosA - cos 2A.sinA}{sinA.cosA}$
= $\dfrac{sin (2A-A)}{sinA.cosA}$
= $\dfrac{sin A}{sinA.cosA}$
= $\dfrac{1}{cosA}$
= $sec A$
RHS
0 Comments
You can let us know your questions in the comments section as well.