Question: Prove the following trigonometric identity: \dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA} = sec A.

Solution:

LHS
= \dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA}

= \dfrac{sin 2A.cosA - cos 2A.sinA}{sinA.cosA}

= \dfrac{sin (2A-A)}{sinA.cosA}

= \dfrac{sin A}{sinA.cosA}

= \dfrac{1}{cosA}

= sec A
RHS

Related Notes And Solutions:

Link: Introduction To Trigonometry
Link: Values of Trigonometric Ratios
Link: Compound Angles

#SciPiPupil