Question: Prove the following trigonometric identity: \dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA} = sec A.
Solution:
LHS
= \dfrac{sin 2A}{sinA} - \dfrac{cos 2A}{cosA}
= \dfrac{sin 2A.cosA - cos 2A.sinA}{sinA.cosA}
= \dfrac{sin (2A-A)}{sinA.cosA}
= \dfrac{sin A}{sinA.cosA}
= \dfrac{1}{cosA}
= sec A
RHS
0 Comments
You can let us know your questions in the comments section as well.