Solution:
Given,
$2 sin² \theta - cos \theta = 1$
To find:
$\theta = ?$
Now,
$2 sin² \theta - cos \theta = 1$
or, $2 sin² \theta = 1 +cos \theta$
or, $sin² \theta = \dfrac{1 +cos \theta}{2}$
or, $sin² \theta = cos²\frac{\theta}{2}$
or, $sin \theta = cos\frac{ \theta}{2}$
Either,
$sin \theta = cos\frac{ \theta}{2}$
or, $2 sin\frac{\theta}{2}cos\frac{ \theta}{2} = cos\frac{ \theta}{2} $
or, $2 sin\frac{\theta}{2} = 1$
or, $sin\frac{\theta}{2} = \dfrac{1}{2}$ --- (i)
or, $sin\frac{\theta}{2} = sin30°$
or, $\frac{\theta}{2} = 30°$
$\therefore, \theta = 60°$
Or,
$sin \theta = cos\frac{ \theta}{2}$
or, $sin \theta = sin(90° + \frac{ \theta}{2})$
or, $\theta = \frac{180°+\theta}{2}$
or, $2\theta = 180° +\theta$
$\therefore, \theta = 180°$
Or,
Solving (i)
$sin\frac{\theta}{2} = \dfrac{1}{2}$
or, $sin\frac{\theta}{2} = sin150°$
or, $\frac{\theta}{2} = 150°$
$\therefore, \theta = 300°$
So,
The value of $\theta$ in the given trigonometric equations could be 60°, 180° or 300°.
Question: Solve the following trigonometric equation: 2 sin² 'theta' - cos 'theta' = 1 | SciPiPupil
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.