Question: The angle between two lines is 45°. If the slope of one of them is \dfrac{1}{2}, find the slope of the other.

Solution:
Given,

Angle between two lines (\theta) = 45°

Slope of one (m_1) = \dfrac{1}{2}

To find: slope of another (m_2) = ?

We know,

tan \theta = \left ( \pm \dfrac{m_1 - m_2}{1 + m_1×m_2} \right )

or, tan 45° = \left ( \pm \dfrac{m_1 - m_2}{1 + m_1×m_2} \right )

or, 1 =  \left ( \pm \dfrac{m_1 - m_2}{1 + m_1×m_2} \right )

or, 1 + m_1 × m_2 = \pm ( m_1 - m_2)

or, 1 + \dfrac{1}{2} × m_2 = \pm left ( \dfrac{1}{2} - m_2 \right )


Taking positive sign;

or, 1 + \dfrac{1}{2} × m_2 =  \dfrac{1}{2} - m_2

or, 1 + \dfrac{m_2}{2} = \dfrac{1 - 2m_2}{2}

or, \dfrac{2 + m_2}{2} = \dfrac{1 - 2m_2}{2}

or, 2 + m_2 = 1 - 2m_2

or, 2m_2 + m_2 = 1-2

or, 3m_2 = -1

\therefore m_2 = - \dfrac{1}{3}


Taking negative sign,

or, 1 + \dfrac{1}{2} × m_2 = - \left ( \dfrac{1}{2} - m_2 \right )

or, \dfrac{2 + m_2}{2} = - \left ( \dfrac{1 - 2m_2}{2} \right )

or, 2 + m_2 = - ( 1 - 2m_2)

or, 2 + m_2 = -1 + 2 m_2

or, 2m_2 - m_2 = 2 + 1

\therefore m_2 = 3

Hence, the slope of the other line is either 3 or - \dfrac{1}{3}.



Related Notes and Solutions:

Here is the website link to all the important formulae of Coordinate Geometry of Class 10.

#SciPiPupil