Question: Find the separate equations of straight lines represented by the following equation: x² - 2xy cosecA + y² = 0.
Solution:
Given
Single equation of pair of straight lines is
x² - 2xy cosecA + y² = 0
[ Dividing by y² ]
or, $\dfrac{x²}{y²} - \dfrac{2xy cosecA}{y²} + \dfrac{y²}{y²} = 0$
or, $\left ( \dfrac{x}{y} \right )^2 - 2 cosecA \dfrac{x}{y} + 1 = 0$ - (i)
Comparing equation (i) with ax² + bx + c = 0
We get,
a = 1, b = -2 cosecA, c = 1, x = x/y
Using formula of quadratic equation,
$or, \dfrac{x}{y} = \dfrac{-b \pm \sqrt{b² - 4ac}}{2a} $
$= \dfrac{- (-2 cosecA) \pm \sqrt{(-2cosecA)² - 4×1×1}}{2}$
$= \dfrac{2 cosecA \pm \sqrt{4cosec²A - 4}}{2}$
$= \dfrac{2 cosecA \pm \sqrt{4(cosec²A - 1)}}{2}$
$= \dfrac{2 cosec\alpha \pm 2\sqrt{cosec²A - 1}}{2}$
[ cosec² A - 1 = cot² A ]
$= \dfrac{2 cosecA \pm 2\sqrt{cot² A}}{2}$
$or, \dfrac{x}{y} = \dfrac{2 cosecA \pm 2cotA}{2}$
Taking positive sign,
$or, \dfrac{x}{y} = \dfrac{2 cosecA + 2cotA}{2}$
$or, \dfrac{x}{y} = \dfrac{2 (cosecA+ cotA)}{2}$
$or, x = y(cosecA + cotA)$
$or, x = y cosecA +y cotA$
$or, x - y cosec A - y cotA = 0$
Taking negative sign,
$or, \dfrac{x}{y} = \dfrac{2 cosecA- 2cotA}{2}$
$or, \dfrac{x}{y} = \dfrac{2 (cosecA - cotA)}{2}$
$or, x = y(cosecA - cotA)$
$or, x = y cosecA - y cotA$
$or, x - y cosecA+ y cotA= 0$
Hence, the required separate equations of straight lines represented by the above equation is ($x - y cosec A - y cotA = 0$) and ($x - y cosecA+ y cotA= 0$).
Related Notes and Solutions:
Here is the website link to all the important formulae of Coordinate Geometry of Class 10.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.