Question: Simplify: $\left (\dfrac{x^{a²+b²}}{x^{-ab}} \right)^{a-b} ×$ $\left (\dfrac{x^{b²+bc}}{x^{-c²}} \right)^{b-c} ×$$\left (\dfrac{x^{c²+ac}}{x^{-a²}} \right)^{c-a} ×$
Solution:
Given,
$= \left (\dfrac{x^{a²+b²}}{x^{-ab}} \right)^{a-b} ×\left (\dfrac{x^{b²+bc}}{x^{-c²}} \right)^{b-c} ×\left (\dfrac{x^{c²+ac}}{x^{-a²}} \right)^{c-a} ×$
$= x^{(a² +ab +b²)(a-b)} × x^{(b² +bc +c²)(b-c)} × x^{(c² +ac +a²)(c-a)}$
$= x^{a³-b³} × x^{b³-c³} × x^{c³-a³}$
$= x^{(a³-b³) +(b³-c³) + (c³-a³)}$
$= x^{a³-b³+b³-c³+c³-a³}$
$= x^0$
$= 1$
= Answer
0 Comments
You can let us know your questions in the comments section as well.