Question: Simplify: \left (\dfrac{x^{a²+b²}}{x^{-ab}} \right)^{a-b} × \left (\dfrac{x^{b²+bc}}{x^{-c²}} \right)^{b-c} ×\left (\dfrac{x^{c²+ac}}{x^{-a²}} \right)^{c-a} ×


Solution:
Given,

= \left (\dfrac{x^{a²+b²}}{x^{-ab}} \right)^{a-b} ×\left (\dfrac{x^{b²+bc}}{x^{-c²}} \right)^{b-c} ×\left (\dfrac{x^{c²+ac}}{x^{-a²}} \right)^{c-a} ×

= x^{(a² +ab +b²)(a-b)} × x^{(b² +bc +c²)(b-c)} × x^{(c² +ac +a²)(c-a)}

= x^{a³-b³} × x^{b³-c³} × x^{c³-a³}

= x^{(a³-b³) +(b³-c³) + (c³-a³)}

= x^{a³-b³+b³-c³+c³-a³}

= x^0

= 1
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil