Question: Simplify: $(x^a ÷ x^b)^{a²+ab+b²} ×$$ (x^b÷x^c)^{b²+bc+c²} ×$$ (x^c ÷x^a)^{c²+ca+a²}$
Solution:
Given,
$= (x^a ÷ x^b)^{a²+ab+b²} × (x^b÷x^c)^{b²+bc+c²} ×(x^c ÷x^a)^{c²+ca+a²}$
$= (x^{a-b})^{a²+ab+b²} × (x^{b-c})^{b²+bc+c²} ×(x^{c-a})^{c²+ca+a²}$
$= x^{(a-b)(a²+ab+b²)} × x^{(b-c)(b²+bc+c²)} × x^{(c-a)(c²+ca+a²)}$
$= x^{a³ -b³} × x^{b³ -c³} × x^{c³-a³}$
$= x^{a³ -b³+(b³-c³) +(c³-a³)}$
$= x^{a³-b³+b³-c³+c³-a³}$
$= x^0$
$= 1$
= Answer
0 Comments
You can let us know your questions in the comments section as well.