Question: Simplify: \left ( \dfrac{x^a}{x^{-b}}\right )^{a-b} *\left ( \dfrac{x^b}{x^{-c}}\right) ^{b-c} *\left ( \dfrac{x^c}{x^{a}} \right )^{c+a}

Solution:
Given,

= \left ( \dfrac{x^a}{x^{-b}}\right )^{a-b} * \left ( \dfrac{x^b}{x^{-c}}\right )^{b-c} *\left ( \dfrac{x^c}{x^{-a}} \right )^{c+a}

= \left (x ^{a+b} \right )^{a-b} * \left (x ^{b+c} \right )^{b-c} * \left (x ^{c-a} \right )^{c+a}

= x^{(a+b)(a-b)} * x^{(b+c)(b-c)} * x^{(c-a)(c+a)}

= x^{a²-b²} * x^{b²-c²} * x^{c²-a²}

= x^{a² -b²+(b²-c²) + (c²-a²)}

= x^{a²-b²+b²-c²+c²-a²}

= x^0

= 1
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil