Question: Simplify: \left ( \dfrac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}} \right ) ^{\frac{1}{bc}} ×\left ( \dfrac{x^{\frac{c}{a}}}{x^{\frac{a}{c}}} \right ) ^{\frac{1}{ca}} ×\left ( \dfrac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}} \right ) ^{\frac{1}{ab}}
Solution:
Given,
= \left ( \dfrac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}} \right ) ^{\frac{1}{bc}} ×\left ( \dfrac{x^{\frac{c}{a}}}{x^{\frac{a}{c}}} \right ) ^{\frac{1}{ca}} × \left ( \dfrac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}} \right ) ^{\frac{1}{ab}}
= \left ( x^{\frac{b}{c} - \frac{c}{b}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c}{a} - \frac{a}{c}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a}{b} - \frac{b}{a}} \right ) ^{\frac{1}{ab}}
= \left ( x^{\frac{b² -c²}{bc}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c²-a²}{ca}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a²-b²}{ab}} \right ) ^{\frac{1}{ab}}
= \left ( x^{\frac{b²-c²}{bc}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c²-a²}{ca}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a²-b²}{ab}} \right ) ^{\frac{1}{ab}}
= x^{b²-c²} × x^{c²-a²} × x^{a² -b²}
= x^{(b²-c²)+(c²-a²) +(a²-b²)}
= x^{b²-c²+c²-a²+a²-b²}
= x^0
= 1
= Answer
Related Notes and Solutions:
Here is the website link to the notes of Indices.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.