Question: Simplify: \left ( \dfrac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}} \right ) ^{\frac{1}{bc}} ×\left ( \dfrac{x^{\frac{c}{a}}}{x^{\frac{a}{c}}} \right ) ^{\frac{1}{ca}} ×\left ( \dfrac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}} \right ) ^{\frac{1}{ab}}

Solution:
Given,

= \left ( \dfrac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}} \right ) ^{\frac{1}{bc}} ×\left ( \dfrac{x^{\frac{c}{a}}}{x^{\frac{a}{c}}} \right ) ^{\frac{1}{ca}} × \left ( \dfrac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}} \right ) ^{\frac{1}{ab}}

= \left ( x^{\frac{b}{c} - \frac{c}{b}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c}{a} - \frac{a}{c}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a}{b} - \frac{b}{a}} \right ) ^{\frac{1}{ab}}

= \left ( x^{\frac{b² -c²}{bc}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c²-a²}{ca}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a²-b²}{ab}} \right ) ^{\frac{1}{ab}}

= \left ( x^{\frac{b²-c²}{bc}} \right ) ^{\frac{1}{bc}} × \left ( x^{\frac{c²-a²}{ca}} \right ) ^{\frac{1}{ca}} × \left ( x^{\frac{a²-b²}{ab}} \right ) ^{\frac{1}{ab}} 

= x^{b²-c²} × x^{c²-a²} × x^{a² -b²}

= x^{(b²-c²)+(c²-a²) +(a²-b²)}

= x^{b²-c²+c²-a²+a²-b²}

= x^0

= 1
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil