Question: Simplify: $(x^{m²-n²})^{\frac{1}{m+n}} ×$$(x^{n²-l²})^{\frac{1}{n+p}} ×$$(x^{p²-m²})^{\frac{1}{p+m}}$


Solution:
Given,

$= (x^{m²-n²})^{\frac{1}{m+n}} ×(x^{n²-l²})^{\frac{1}{n+p}} ×(x^{p²-m²})^{\frac{1}{p+m}}$

$= (x^{(m+n)(m-n)})^{\frac{1}{m+n}} ×(x^{(n+p)(n-p)})^{\frac{1}{n+p}} ×(x^{(p+m)(p-m)})^{\frac{1}{p+m}}$

$= x^{m-n} × x^{n-p} × x^{p-m}$

$= x^{(m-n) +(n-p) +(p-m)}$

$= x^{m-n+n-p+p-m}$

$= x^0$

$= 1$
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil