Question: Simplify: (x^{m²-n²})^{\frac{1}{m+n}} ×(x^{n²-l²})^{\frac{1}{n+p}} ×(x^{p²-m²})^{\frac{1}{p+m}}


Solution:
Given,

= (x^{m²-n²})^{\frac{1}{m+n}} ×(x^{n²-l²})^{\frac{1}{n+p}} ×(x^{p²-m²})^{\frac{1}{p+m}}

= (x^{(m+n)(m-n)})^{\frac{1}{m+n}} ×(x^{(n+p)(n-p)})^{\frac{1}{n+p}} ×(x^{(p+m)(p-m)})^{\frac{1}{p+m}}

= x^{m-n} × x^{n-p} × x^{p-m}

= x^{(m-n) +(n-p) +(p-m)}

= x^{m-n+n-p+p-m}

= x^0

= 1
= Answer

Related Notes and Solutions:

Here is the website link to the notes of Indices.

#SciPiPupil