Question: Solve: $\sqrt{3x +1} - \sqrt{x -1} = 2$
Solution:
Given,
$\sqrt{3x +1} - \sqrt{x -1} = 2$
$or, \sqrt{3x +1} = 2 + \sqrt{x -1}$
[ Squaring both sides ]
$or, (\sqrt{3x +1})² = (2+\sqrt{x -1})²$
$or, 3x +1 = 2² + 2×2×\sqrt{x -1} + (\sqrt{x-1})²$
$or, 3x +1 = 4 + 4\sqrt{x -1} + x -1$
$or, 3x -x = 4-1 -1 + 4\sqrt{x -1}$
$or, 2x = 2 + 4\sqrt{x -1}$
$or, 4\sqrt{x -1} = 2x -2$
$or, 4\sqrt{x -1} = 2(x-2)$
$or, 2\sqrt{x-1} = (x-1)$
$or, 2 = \dffac{x-1}{\sqrt{x}-1}$
$or, 2 = \dfrac{(sqrt{x})² - (1)²}{\sqrt{x} -1}$
$or, 2 = \dfrac{(\sqrt{x} +1)(\sqrt{x} -1)}{(\sqrt{x} -1)}$
$or, 2 = \sqrt{x} +1$
$or, 2-1 = \sqrt{x}$
$or, \sqrt{x} = 1$
$or, \sqrt{x} = \sqrt{1}$
$\therefore x = 1$
= Answer
0 Comments
You can let us know your questions in the comments section as well.