Question: Solve $\sqrt[3]{7x +11} = \sqrt[3]{3x +5}$

Solution:
Given,

$\sqrt[3]{7x +11} = \sqrt[3]{3x +5}$

[ Cubing both sides ]

$or, (\sqrt[3]{7x +11})^3 = (\sqrt[3]{3x +5})^3$

$or, 7x +11 = 3x +5$

$or, 7x -3x = 5-11$

$or, 4x = -6$

$or, x = -\dfrac{6}{4}$

$\therefore x = - \dfrac{3}{2}$