Question: Find the standard deviation using actual mean.
X | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
f | 4 | 6 | 10 | 20 | 6 | 4 |
Solution:
Using actual mean,
Arranging the data in a table,
X | f | m | fm | d|x-31| | d² | fd² |
0-10 | 4 | 5 | 20 | 26 | 676 | 2704 |
10-20 | 6 | 15 | 90 | 16 | 256 | 1536 |
20-30 | 10 | 25 | 250 | -6 | 36 | 360 |
30-40 | 20 | 35 | 700 | 4 | 16 | 320 |
40-50 | 6 | 45 | 270 | 14 | 196 | 1176 |
50-60 | 4 | 55 | 220 | 24 | 576 | 2304 |
N=50 | $\sum$fm = 1550 | $\sum$fd²=8400 |
Mean = $\dfrac{\sum fm}{N}$
$= \dfrac{1550}{50}$
$= 31$
Standard Deviation ($\sigma$) = $ \sqrt{ \dfrac{\sum fd²}{N} }$
$= \sqrt{ \dfrac{8400}{50} }$
$= \sqrt{168}$
$= 12.96$
Hence, the required standard deviation using actual mean of the given data is 12.96.
Related Notes and Solutions:
Here is the website link to the notes of Statistics of Class 10.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.