Question: In the diagram, $\vec{PQ} = \vec{p} \; and \; \vec{QS} = \vec{q}. If \frac{ \vec{QS}}{ \vec{SR}} = \frac{1}{3}$, express $\vec{PR}$ in terms of $\vec{p}$ and $\vec{q}$.
Solution:
Given: $\vec{PQ} = \vec{p}, \vec{QS} = \vec{q} \; and \; \frac{ \vec{QS}}{ \vec{SR}} = \frac{1}{3}$
To find: value of $\vec{PR}$
In ∆ PQS, using ∆ law of vector addition,
$\vec{PS} = \vec{PQ} + \vec{QS}$
$or, \vec{PS} = \vec{p} + \vec{q}$
We have,
$\dfrac{QS}{SR} = \dfrac{1}{3}$
$or, \dfrac{ \vec{QS} }{ \vec{SR} } = \dfrac{1}{3}$
$or, 3 \vec{QS} = \vec{SR}$
$or, 3 \vec{q} = \vec{SP} + \vec{PR}$
$or, 3 \vec{q} = \vec{PR} - \vec{PS}$
$or, 3\vec{q} + \vec{PS} = \vec{PR}$
$or, 3\vec{q} + ( \vec{p} + \vec{q} ) = \vec{PR}$
$or, 3\vec{q} + \vec{p} + \vec{q} = \vec{PR}$
$\therefore \vec{PR} = \vec{p} + 4 \vec{q}$
Hence, the required value of $\vec{PR}$ is $\vec{p} + 4 \vec{q}$.
0 Comments
You can let us know your questions in the comments section as well.