Question: In the figure, \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \;and\; \vec{AB} = 2\vec{AP}, find the value of \vec{OP} in terms of \vec{a} and \vec{b}.

Solution:

Given: \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 2\vec{AP}

To find: value of \vec{b}

Triangle - Vector Geometry

In ∆ OAP,
Using ∆ law of vector addition,
\vec{AP} = \vec{AO} + \vec{OP}

or, \vec{AP} = \vec{OP} - \vec{OA}

or, \vec{AP} = \vec{OP} - \vec{a} - (i)

In ∆ OAB,
Using ∆ law of vector addition,
\vec{AB} = \vec{AO} + \vec{OB}

or, \vec{AB} = \vec{OB} - \vec{OA}

or, \vec{AB} = \vec{b} - \vec{a}

We have,

\vec{AB} = 2 \vec{AP} - (ii)

[ Put value of \vec{AB} and \vec{AP} from equation (ii) and equation (i) respectively. ]

or, \vec{b} - \vec{a} = 2 (  \vec{OP} - \vec{a})

or, \vec{b} - \vec{a} = 2\vec{OP} - 2\vec{a}

or, 2\vec{a} - \vec{a} + \vec{b} = 2 \vec{OP}

or, 2\vec{OP} = \vec{a} + \vec{b}

or, \vec{OP} = \dfrac{\vec{a} + \vec{b}}{2}

\therefore \vec{OP} = \dfrac{1}{2} (\vec{a} + \vec{b})

Therefore, the required value of \vec{OP} in terms of \vec{a} \; and \; \vec{b} is \frac{1}{2} (\vec{a} + \vec{b}).