Question: In the figure, $\vec{OA} = \vec{a}, \vec{OB} = \vec{b} \;and\; \vec{AB} = 2\vec{AP}$, find the value of $\vec{OP}$ in terms of $\vec{a}$ and $\vec{b}$.
Solution:
Given: $\vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 2\vec{AP}$
To find: value of $\vec{b}$
In ∆ OAP,
Using ∆ law of vector addition,
$\vec{AP} = \vec{AO} + \vec{OP}$
$or, \vec{AP} = \vec{OP} - \vec{OA}$
$or, \vec{AP} = \vec{OP} - \vec{a}$ - (i)
In ∆ OAB,
Using ∆ law of vector addition,
$\vec{AB} = \vec{AO} + \vec{OB}$
$or, \vec{AB} = \vec{OB} - \vec{OA}$
$or, \vec{AB} = \vec{b} - \vec{a}$
We have,
$\vec{AB} = 2 \vec{AP}$ - (ii)
[ Put value of $\vec{AB}$ and $\vec{AP}$ from equation (ii) and equation (i) respectively. ]
$or, \vec{b} - \vec{a} = 2 ( \vec{OP} - \vec{a})$
$or, \vec{b} - \vec{a} = 2\vec{OP} - 2\vec{a}$
$or, 2\vec{a} - \vec{a} + \vec{b} = 2 \vec{OP}$
$or, 2\vec{OP} = \vec{a} + \vec{b}$
$or, \vec{OP} = \dfrac{\vec{a} + \vec{b}}{2}$
$\therefore \vec{OP} = \dfrac{1}{2} (\vec{a} + \vec{b})$
Therefore, the required value of $\vec{OP}$ in terms of $\vec{a} \; and \; \vec{b}$ is $ \frac{1}{2} (\vec{a} + \vec{b})$.
0 Comments
You can let us know your questions in the comments section as well.