Question: In the figure, \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \;and\; \vec{AB} = 2\vec{AP}, find the value of \vec{OP} in terms of \vec{a} and \vec{b}.
Solution:
Given: \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 2\vec{AP}
To find: value of \vec{b}

In ∆ OAP,
Using ∆ law of vector addition,
\vec{AP} = \vec{AO} + \vec{OP}
or, \vec{AP} = \vec{OP} - \vec{OA}
or, \vec{AP} = \vec{OP} - \vec{a} - (i)
In ∆ OAB,
Using ∆ law of vector addition,
\vec{AB} = \vec{AO} + \vec{OB}
or, \vec{AB} = \vec{OB} - \vec{OA}
or, \vec{AB} = \vec{b} - \vec{a}
We have,
\vec{AB} = 2 \vec{AP} - (ii)
[ Put value of \vec{AB} and \vec{AP} from equation (ii) and equation (i) respectively. ]
or, \vec{b} - \vec{a} = 2 ( \vec{OP} - \vec{a})
or, \vec{b} - \vec{a} = 2\vec{OP} - 2\vec{a}
or, 2\vec{a} - \vec{a} + \vec{b} = 2 \vec{OP}
or, 2\vec{OP} = \vec{a} + \vec{b}
or, \vec{OP} = \dfrac{\vec{a} + \vec{b}}{2}
\therefore \vec{OP} = \dfrac{1}{2} (\vec{a} + \vec{b})
Therefore, the required value of \vec{OP} in terms of \vec{a} \; and \; \vec{b} is \frac{1}{2} (\vec{a} + \vec{b}).
0 Comments
You can let us know your questions in the comments section as well.